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Abstract A quantum-classical coupled system which models the diffusive transport of elec-
trons partially confined in semiconductors nanostructures was presented in Ben Abdallah
and Méhats (Proc. Edinb. Math. Soc. 49:513–549, 2006). In this model, electrons are as-
sumed to behave like wave in the confinement direction and to have a classical behaviour in
a diffusive regime in the transport direction parallel to the electron gas. It was formally de-
rived from a kinetic system for partially quantized particles thanks to a diffusive limit when
the mean free path becomes small with respect to the macroscopic length scale. This paper
is devoted to the rigorous study of this limit for a transport in one dimension. In the transport
direction, the motion of particles is described by a 1D Boltzmann equation. A Boltzmann-
Schrödinger-Poisson system is then considered. Existence of renormalized solutions relying
on the study of a quasistatic Schrödinger-Poisson system and on an entropy estimate is es-
tablished. Its diffusive limit is then considered.

Keywords Schrödinger equation · Boltzmann equation · Poisson equation · Entropy
inequality · Subband method · Diffusion limit · Renormalized solution · Drift-diffusion
equation · Semiconductors

1 Introduction and Main Results

By downscaling electronics components at nanometer scale, quantum effects become non-
negligible. In nanoscale semiconductor devices, electrons might be extremely confined in
one or several directions due to the length scales. These directions are referred to as the
confining directions. This leads to a partial quantization of the energy. The subband decom-
position approach [27, 36, 37] was introduced by several authors in order to take advantage
of this reduction of dimensionality. This method consists of a separation of the confinement
and the transport directions.
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In the non-confined direction(s), that we shall also refer to as the transport direction(s),
transport might have a quantum nature or be purely classical in the kinetic or diffusive
regimes. In this work, we are interested in the kinetic regime (the diffusive regime has been
studied in [5, 34]) and in the convergence from the kinetic model to the diffusive model. One
of the most used models to describe the transport of charged particles in a kinetic approach
in several domain such as plasmas or semiconductors is the Boltzmann transport equation
[6, 22, 31, 33].

In the confined direction, electrons behave like waves. The system is at thermodynamical
equilibrium and is described by the subband model as a statistical mixture of eigenstates of
the 1D stationary Schrödinger equation.

Namely, we consider a particle system of charged carriers which is partially quantized in
one direction (denoted by z) and which, in the transport direction denoted by x, is in a kinetic
regime. The coupling occurs then in the momentum variable. We will first briefly describe
the model used and refer the reader to [26] for more details. A Vlasov-Schrödinger-Poisson
system which presents also a similar quantum-classical coupling is analyzed in [4].

1.1 The Schrödinger-Poisson System

In the transverse direction (referred by z), electrons are confined in the nanostructure. The
description of the system needs the diagonalization of the 1D stationary Schrödinger equa-
tion. We define then on � = (a, b) × (0,1), the set (χk[V ], εk[V ])k≥1 as the complete set
of eigenfunctions and eigenvalues of the Schrödinger operator in the z variable, z ∈ (0,1):{

− 1
2 ∂2

z χk[V ] + V χk[V ] = εk[V ]χk[V ] (k ≥ 1),

χk[V ](0) = χk[V ](1) = 0,
∫ 1

0 |χk[V ]|2 dz = 1.
(1.1)

The square of the modulus of the wave functions (χk[V ])k≥1 represents the probability of
occupation on the kth subband. If we denote ρk the occupation number of the kth subband,
which is defined below by

∫
fk dv, the particle density for a partially quantized system can

be written

N(t, x, z) =
+∞∑
k=1

ρk(t, x)|χk[V (t, x, ·)](z)|2.

The electrostatic potential V generated by the charged carriers is then the solution of the
Poisson equation:

−�x,zV (t, x, z) =
∑

k

ρk(t, x)|χk[V (t, x, ·)](z)|2, (1.2)

with the boundary conditions:{
dV
dx

(t, a, z) = dV
dx

(t, b, z) = 0, for z ∈ (0,1),

V (t, x,0) = V (t, x,1) = 0, for x ∈ (a, b).
(1.3)

The boundary conditions here are chosen such in order to simplify the mathematical analy-
sis, moreover elliptic regularity of the Poisson equation (1.2) are needed in our proofs. How-
ever, in the spirit of [5], we can extend the proofs to the case where V (t, x,0) = V 0

b (x) and
V (t, x,1) = V 1

b (x) with d
dx

V 0
b (a) = d

dx
V 1

b (b) = 0. The idea is to introduce the extension V

on � of the boundary data and to consider the quantities V −V instead of V , εk[V ]−εk[V ]
instead of εk[V ], . . . .
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The Schrödinger-Poisson system was solved in [24, 25] by variational methods. Such
techniques are used here to obtain existence and uniqueness of solutions of this system for
a given ρ = (ρk)k≥1.

In the following, when there is no confusion possible, we will denote εk instead of εk[V ]
and χk instead of χk[V ].

1.2 The Transport Equation

The Boltzmann equation is one of the most used equation describing the transport of charged
carriers in semiconductors in a kinetic regime [29, 33]. Let η > 0 be the scaled mean free
path assumed to be small and denote V η the electrostatic potential generated by the charged
carriers. We consider here the scaled Boltzmann equation in one dimension for the subband
model defined on the phase space (a, b) × R. The position x belongs to (a, b), the velocity
v belongs to R and the time variable t is nonnegative. Then the occupation number ρ

η

k is
defined by ρ

η

k = ∫
R

f
η

k dv where the distribution function f
η

k (t, x, v) satisfies

∂tf
η

k + 1

η
(v ∂xf

η

k − ∂xεk[V η] ∂vf
η

k ) = 1

η2
Qη(f η)k. (1.4)

By using the notation {·, ·} for the Poisson bracket: {g,h} = ∂xh∂vg − ∂vh∂xg, we can
rewrite the Boltzmann equation:

∂tf
η

k + 1

η
{Hη

k , f
η

k } = 1

η2
Qη(f η)k,

where Hk denotes the energy of the system in the kth subband which is the sum of the
kinetic energy and the potential energy:

Hη

k (t, x, v) = 1

2
v2 + εk[V η(t, x, ·)].

In semiconductors, the main mechanism driving the electrons towards a diffusive regime is
collision with phonons (vibration of the semiconductor crystal lattice) [32]. The collision
operator Qη for the electron-phonon interaction in the linear BGK approximation reads in
the following form:

Qη(f )k =
∑
k′

∫
R

αk,k′(v, v′)(Mη

k (v)fk′(v′) − Mη

k′(v′)fk(v)) dv′, (1.5)

where the function Mη

k is the normalized Maxwellian

Mη

k(t, x, v) = 1

2π Z η
e−Hη

k
(t,x,v) (1.6)

and where the repartition function Z η is given by

Z η(t, x) =
+∞∑
k=1

e−εk [V η(t,x,·)]. (1.7)

We refer the reader to [7, 31, 33] for a physical background on the Boltzmann equation (1.4).
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The equation is completed with the specular reflection boundary conditions:

f
η

k (t, a, v) = f
η

k (t, a,−v), f
η

k (t, b, v) = f
η

k (t, b,−v), v > 0, t ∈ R
+. (1.8)

The surface density of particles is defined by

Nη
s (t, x) =

∫ 1

0
Nη(t, x, z) dz =

∑
k

∫
R

f
η

k (t, x, v) dv =
∑

k

ρ
η

k (t, x).

The cross section α is assumed to be symmetric and bounded from above and below:

(A.1) αk,k′(v, v′) = αk′,k(v′, v) and 0 < α1 ≤ αk,k′(v, v′) ≤ α2, for all (v, v′) ∈ R
2, k, k′ ≥ 1.

We considered the well-prepared initial condition assumed to be at the thermal equilib-
rium:

f
η

k (0, x, v) = f in
k (x, v) := N in

s (x)

2π
∑

k e−εk [V in] e−v2/2−εk [V in], (x, v) ∈ [a, b] × R, (1.9)

where (V in, (εk[V in], χk[V in])k≥1) is the set of solutions of the Schrödinger-Poisson system
at thermal equilibrium:{− 1

2 ∂2
z χk[V in] + V inχk[V in] = εk[V in]χk[V in] (k ≥ 1),

χk[V in](x, ·) ∈ H 1
0 (0,1),

∫ 1
0 χk[V in]χ�[V in]dz = δk�,

−�x,zV
in =

∑
k

N in
s (x)∑

k e−εk [V in] |χk[V in]|2e−εk [V in].

We assume that we have

(A.2) N in
s ≥ 0, N in

s ∈ C0([a, b]).
Under this assumption, it has been stated in Proposition 2.1 of [5] that the above

Schrödinger-Poisson system at thermal equilibrium admits a unique set of solution
(V in, (εk[V in], χk[V in])k≥1) with 0 ≤ V in ∈ C1(�), where we recall that � = (a, b)×(0,1).

From a mathematical point of view, the diffusive limit is obtained by letting η going to
0 in (1.4). It is well-known that in a diffusion approximation the surface density Ns satisfies
at the limit a drift-diffusion equation [14, 29]. We propose here to extend these results for
the coupled quantum-classical system presented above.

Before stating the results of this paper, let us introduce some notations. An originality of
this system is the infinite sequence of solution of kinetic equations. Then we denote for any
separable Banach space E by �1(E) the space of sequences (hk)k≥1 such that for all k ≥ 1
we have hk ∈ E and

∑
k≥1 ‖hk‖E < +∞, this last quantity being the norm of (hk)k≥1 in

�1(E). Its dual is �∞(E′) the set of sequences (uk)k≥1 belonging to the dual E′ of E such that
supk ‖uk‖E′ is finite. We say that a sequence (hn

k)k≥1 converges weakly to (hk) in �1(E) if for
any (uk)k≥1 ∈ �∞(E′), we have

∑
k〈hn

k −hk,uk〉E′,E → 0 as n → ∞. We recall that as a con-
sequence of the Dunford-Pettis Theorem and the De La Vallée Poussin Theorem, a sequence
(hn)n is relatively weakly compact in �1(L1(O)) (for O ⊂ R

N ) if there exists a nonnega-
tive function G satisfying limt→+∞ G(t)

t
= +∞ and such that sup

∑
k

∫
�

G(|fk|) dx < +∞
(see Chap. 2 of [12]). All along the paper, we will usually shortly denote by ‖hk‖L

p
t,x,v

the
Lp((0, T ) × [a, b] × R) norm of hk . Finally, we will make use of the space L logL(O)

defined as the space of positive function f such that ψ(f ) ∈ L1(O) where ψ(x) = x logx.



886 N. Vauchelet

1.3 Main Results

We are interested in this paper in the diffusive limit of the Boltzmann-Schrödinger-Poisson
system presented before:

∂tf
η

k + 1

η
(v.∂xf

η

k − ∂xεη

k .∂vf
η

k ) = 1

η2
Qη(f η)k, (x, v) ∈ (a, b) × R, (1.10)

{− 1
2 ∂2

z χ
η

k + V ηχ
η

k = εη

kχ
η

k (k ≥ 1),

χ
η

k (t, x, ·) ∈ H 1
0 (0,1),

∫ 1
0 χ

η

k χ
η

� dz = δk�,
(1.11)

−�x,zV
η =

∑
k

∫
R

f
η

k |χη

k |2 dv, (1.12)

which is coupled with the boundary condition (1.8) and (1.3) and the well-prepared initial
boundary condition (1.9). The aim of this paper is to prove rigorously the limit as η goes to
0 of this system to the drift-diffusion-Schrödinger-Poisson system studied in [5]. One par-
ticular relevant motivation of this work is to derive a model for which numerical simulations
are less costly and simpler than for the kinetic-quantum model (1.10)–(1.12). Then a numer-
ical simulation of the drift-diffusion-Schrödinger-Poisson system obtained as η goes to 0 is
provided in [26] to simulate the diffusive transport of electrons in a double-gate MOSFET.
An interesting continuation of this work is to extend to more general collision operators to
derive a hierarchy of classical-quantum coupled model in the spirit of [3].

To establish rigorously the diffusive limit, we will make use of techniques which have
been developed in the framework of hydrodynamics limits for the Boltzmann equation by
several authors (see e.g. [1, 8, 13, 15, 16, 20, 30] and see [35] for a review). Diffusion limits
for parabolic systems have been presented in [9], where linear kinetic equations arising
in models of plasma or semi-conductors or rarefied gases are considered, and in [19] for
generalized two-velocity models.

Although the linearity of the collision operator Q, the coupling is highly non linear and
then we are not able to construct strong solutions for this system. Thus we will work in the
framework of renormalized solutions [10, 11, 23].

Definition 1.1 We say that a nonnegative function f η = (f
η

k )k∈N∗ is a renormalized solution
of (1.10) if ∀β ∈ C1(R+) with |β(t)| ≤ C(

√
t + 1) and |β ′(t)| ≤ C, we have for all k ≥ 1,

β(f
η

k ) is a weak solution of:⎧⎪⎨
⎪⎩

η∂tβ(f
η

k ) + v ∂xβ(f
η

k ) − ∂xεη

k ∂vβ(f
η

k ) = Qη(f η)k
η

β ′(f η

k ),

β(f
η

k )(t = 0) = β(f in
k ),

β(f
η

k )(t, a, v) = β(f
η

k )(t, a,−v), β(f
η

k )(t, b, v) = β(f
η

k )(t, b,−v), v > 0, t > 0.

The entropy of the system is defined by

Wη(t) =
∑

k

∫ ∫
(a,b)×R

(
f

η

k log
f

η

k

Mk

− f
η

k + Mk

)
dx dv + 1

2

∫ ∫
�

|∇x,zV
η|2 dx dz, (1.13)

where Mk = K exp(− 1
2 (v2 + k2)) with a constant K chosen such that

∑
k

∫
Mk dv = 1. The

dissipation rate which measures the distance to the equilibrium is defined by

Rη(t) = 1

2

∑
k

∫ ∫
(a,b)×R

(√
f

η

k −
√

N
η
s Mη

k

)2
dx dv. (1.14)
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Remark We point out the fact that, looking at the expression of the entropy of the system,
we do not have better estimates in space than L logL for f η and H 1 for V η . It is proved in
Appendix that it implies a bound of ∂xεη

k in L2. Thus the product f
η

k · ∂xεη

k has no meaning
even in a weak sense. The renormalization of the Boltzmann equation allows us to overcome
this difficulty.

The following statement establishes existence of a renormalized solution under the as-
sumption of small initial data:

Theorem 1.2 Let T > 0 and assume that Assumptions (A.1) and (A.2) hold. If we denote:

Nin =
∫ b

a

N in
s dx.

Then, there exists N0 > 0 such that if Nin ≤ N0, the system (1.10)–(1.11)–(1.12)–(1.8)–
(1.9)–(1.3) admits a renormalized solution (V η, (εη

k,χ
η

k , f
η

k )k≥1) on [0, T ] which satisfies

(i) ∀λ > 0, �
η

k,λ := (f
η

k + λ exp(− 1
2 (v2 + k2)))1/2 satisfies

η∂t�
η

k,λ + v ∂x�
η

k,λ − ∂v(∂xεη

k �
η

k,λ) = Qη(f η)k

2η�
η

k,λ

+ λ∂xεη

k

ve− 1
2 (v2+k2)

2�
η

k,λ

. (1.15)

(ii) We have the local mass conservation

∂tN
η
s + ∂xJ

η = 0, where J η = 1

η

∑
k≥1

∫
R

vf
η

k dv. (1.16)

(iii) The entropy inequality holds:

∀t ∈ [0, T ], 0 ≤ Wη(t) + α1

η2

∫ t

0
Rη(s) ds ≤ CT . (1.17)

If the potential is given in L∞, Poupaud [29] has proved existence of strong solutions
of the semiconductors Boltzmann transport equation and their convergence as the mean free
path η goes to 0 towards solutions of the drift-diffusion equation. He uses a method based on
an asymptotic expansion of the solution f η in power of η and estimation on the remainder of
this expansion. Ben Abdallah and Tayed [6] have extended this method and established the
diffusive limit of the Boltzmann-Poisson system in one dimension, since in this case they
obtain enough regularity on the potential. However when the dimension is greater than one,
Masmoudi and Tayeb [21] need to renormalize the Boltzmann equation and use compactness
method to establish the diffusive limit. In this paper we adapt the techniques of Masmoudi
and Tayeb [21] to prove the following theorem:

Theorem 1.3 Let T > 0 and, for η > 0, (V η, (f
η

k , εη

k,χ
η

k )k≥1) be a renormalized solution
of the Boltzmann-Schrödinger-Poisson system as defined in Theorem 1.2 for Nin ≤ N0. Then
as η → 0, if N0 is small enough, this solution converges to a solution (V ,Ns, (εk,χk)k≥1)

of the drift-diffusion-Schrödinger-Poisson (DDSP) system defined by

∂tNs + ∂xJ = 0, J = −D(∂xNs + Ns∂xVs), (1.18)
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{
− 1

2 ∂zzχk + V χk = εkχk (k ≥ 1),

χk(t, x, ·) ∈ H 1
0 (0,1),

∫ 1
0 χk χ� dz = δk�,

(1.19)

−�x,zV = Ns

∑
k

e−εk∑
� e−ε�

|χk|2, (1.20)

where the effective potential Vs is defined by

Vs = − log
∑

k

e−εk , (1.21)

and D is the diffusion coefficient whose expression is given in Corollary 2.2. This system is
completed with the initial condition Ns(0, x) = N in

s (x) and with the following conservative
boundary conditions:{

J (t, a) = J (t, b) = 0, dV
dx

(t, a, z) = dV
dx

(t, b, z) = 0, for z ∈ (0,1),
V (t, x,0) = V (t, x,1) = 0, for x ∈ (a, b).

(1.22)

We have up to an extraction of a subsequence, as η → 0,

‖f η

k − Ns Mk‖�1(L1([0,T ]×[a,b]×R)) → 0 and ‖V η − V ‖L2([0,T ],H 1(�)) → 0.

We notice the assumption of small initial data in these theorems which has been already
set for the study of the Vlasov-Schrödinger-Poisson system in [4]. The existence of solutions
for (DDSP) when the x-variable is two dimensional has been established in [5] when the
diffusion coefficient D is assumed to be a constant. In this case we have enough regularity to
establish the uniqueness of solutions. But for a non constant diffusion coefficient, the proof
of existence is addressed in [34]; however we do not obtain the uniqueness of solutions.

1.4 Strategy of the Proof

As done in [4, 5], the system shall be viewed as a one dimensional Boltzmann equation
(1.10) for the distribution function (f

η

k )k≥1 coupled to the quasistatic Schrödinger-Poisson
system (1.11)–(1.12) for the potential V η . The Schrödinger-Poisson system allows us to
compute the potential as a function of the distribution function, while the Boltzmann equa-
tion gives the value of the distribution function in terms of the electrostatic potential. The
arguments used for the proof of Theorem 1.2 are rather standard (see [23] and reference
therein). A first step is to truncate and to regularize the Boltzmann-Schrödinger-Poisson
system. Thanks to a fixed point argument we can construct strong solutions of the regular-
ized system. Then solutions of the whole system are obtained by a passage to the limit in
the regularization using stability result. These steps are explained in Sect. 5.

Theorem 1.3 establishes the diffusive limit of renormalized solutions of Theorem 1.2 as
η → 0. Regarding the techniques used in the classical Boltzmann-Poisson case [21], the
proof of Theorem 1.3 relies strongly on the entropy estimate (1.17) which is established in
Sect. 2 and on a rigorous analysis of the Schrödinger-Poisson system. A priori estimates
obtained thanks to the entropy allows us to fix the functional framework:

(fk)k≥1 ∈ L∞
t (L logL(dx dv)), ((v2 + k2)fk)k≥1 ∈ L∞

t (�1(L1(dx dv))),

V ∈ L∞
t (H 1(dx dv)).



Diffusive Limit of a Two Dimensional Kinetic System of Partially 889

As recall in the introduction, a consequence of the Dunford-Pettis and the De La Vallée
Poussin Theorem is the relative weak compactness of f η in �1(L1). We recall the following
averaging lemma whose proof can be found in [21] (see also [8]):

Lemma 1.4 Assume that hη is bounded in L2((0, T ) × (a, b) × R), that h
η

0 and h
η

1 are
bounded in L1((0, T ) × (a, b) × R), and that

η∂th
η + v ∂xh

η = h
η

0 + ∂vh
η

1.

Then for all ψ ∈ C∞
0 (R),

lim
y→0

(
sup
η<1

∥∥∥∥
∫

R

(hη(t, x + y, v) − hη(t, x, v))ψ(v) dv

∥∥∥∥
L1

t,x

)
= 0,

where hη is extended by zero for x /∈ [a, b].

Thanks to this averaging lemma we will establish in Sect. 4.1 the relative strong compact-
ness of the surface density Nη

s in �1(L1) as η goes to 0. Then, with the entropy inequality
(1.17), we have:∫ t

0
Rη(s) ds = 1

2

∑
k

∫ t

0

∫ ∫
(a,b)×R

(√
f

η

k −
√

N
η
s Mη

k

)2
dx dv ds ≤ CT η2. (1.23)

Letting η going to 0 we hope to prove with (1.23) that the distribution function converges to
a Maxwellian. But we need to establish the convergence of the eigenenergies εη

k . Contrary
to the Boltzmann-Poisson system [21], the dependency of the potential V η with respect to
the occupation factor ρη is not obvious but needs the resolution of the Schrödinger-Poisson
system in the functional framework suggested by the a priori estimates.

Therefore a key point is the study of the Schrödinger-Poisson system (1.1)–(1.2), which
is the object of Sect. 3. We remark that since we work in one dimension for the transport,
we have that V ∈ H 1(�) implies ‖V ‖L2

z (0,1) ∈ H 1(a, b) which is compactly embedded in
L∞(a, b). It is proved in the Appendix, where we recall some spectral properties of the
Hamiltonian, that it implies a bound on χk in L∞(�) (see Lemma A.4). Thus the product of
ρk with |χk|2 in the right hand side of the Poisson equation (1.2) makes sense. Ben Abdallah
and Méhats [4] have established existence and uniqueness of solutions of this system (1.1)–
(1.2) for an occupation number ρk in Lp for p > 1. The proof is based on an idea of Nier
[24, 25] which suggests to minimize the functional

Jρ(V ) = 1

2

∫ ∫
�

|∇V |2 dx dz −
∑
k≥1

∫ b

a

ρkεk[V ]dx.

A critical point of this functional is a solution of the Schrödinger-Poisson system. But con-
trary to [5, 34] where the occupation factors decay with respect to k, this functional is not
convex. Thus we do not have uniqueness of the minimum. However we prove in Propo-
sition 3.4 that if (ρk)k≥1 and (ρ̃k)k≥1 are in L∞((0, T ), �1(L1(a, b))) and if V and Ṽ are
corresponding solutions of the Schrödinger-Poisson system (1.1)–(1.2),

‖V − Ṽ ‖L1([0,T ],H 1(�)) ≤ C1‖ρk − ρ̃k‖�1(L1((0,T )×(a,b))) +C2 N ‖V − Ṽ ‖L1([0,T ],H 1(�)), (1.24)

where N = max{‖ρk‖L∞((0,T ),�1(L1(a,b))),‖ρ̃k‖L∞((0,T ),�1(L1(a,b)))} and C1 and C2 are nonneg-
ative constants depending only on data. We deduce from this inequality that if N is small
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enough, the solution of the Schrödinger-Poisson system (1.1)–(1.2) is unique. It explains
why Theorems 1.2 and 1.3 are proved only under the assumption of small initial data.

Yet we can prove that the strong compactness of Nη
s in L1 implies the strong com-

pactness of V η in L1((0, T ),H 1(�)). From spectral properties of the Hamiltonian it im-
plies that εk[V η] → εk[V ] as η goes to 0. From (1.23) we deduce that f η → Ns M in
�1(L1(dt dx dv)). It remains to show that the limit function Ns is a solution of the drift-
diffusion equation (1.18). Passing to the limit in the local mass conservation, it suffices to
study the limit of the current J η which is done in Sect. 4.2.

The outline of the paper is as follows. In the second section, after briefly recalling ba-
sic properties of the collision operator, we establish the a priori estimates, which are the
natural estimates for our system. In the third section, we analyze the Schrödinger-Poisson
system under physical assumptions given by the a priori estimates. Section 4 is devoted to
the proof of Theorem 1.3 assuming that we have constructed a renormalized solution of the
Boltzmann-Schrödinger-Poisson system. In Sect. 5, the proof of Theorem 1.2 is considered:
we give the regularization and explain the passing to the limit in the regularized system. The
Appendix is devoted to some useful properties on the spectrum of the Schrödinger operator.

2 A Priori Estimate

2.1 Properties of the Collision Operator

This section is devoted to the study of the collision operator defined by (1.5). The collision
operator Q operates on the v variable only, then we omit in this section the spatial and time
dependency, since these variables are only parameters. We assume that the sequence (εk)k≥1

is given and we define Mk(v) = 1
2π Z exp(− 1

2 v2 −εk) for Z = ∑
k≥1 e−εk . We introduce the

space:

L2
M =

{
(fk)k∈N∗ s.t.

∑
k

∫
R

f (v)2/Mk(v) dv < +∞
}
, (2.1)

with the associated inner product:

〈f,g〉M =
∑

k

∫
R

fkgk

Mk

dv.

Then we summarize the main properties of this collision operator in the following proposi-
tion.

Proposition 2.1 Let Q be defined by (1.5) with a cross section α symmetric and bounded
from above and below i.e. satisfying (A.1). Then we get:

(i)
∑

k

∫
Q(f )k(v) dv = 0.

(ii) Q is a linear, bounded, selfadjoint and negative operator on L2
M .

(iii) The nullspace: KerQ = {f ∈ L2
M s.t. ∃Ns ∈ R with fk = Ns Mk, ∀k ≥ 1}.

(iv) The equation Q(f ) = g admits a solution f ∈ L2
M iff

∑
k

∫
R

gk(v) dv = 0,

and this solution is unique if we impose the same relation on f .
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Proof The first point is trivial. Using the symmetry of the cross section, we get the crucial
identity:

2〈Q(f ), g〉M = −
∑
k,k′

∫ ∫
αk,k′ Mk(v)Mk′(v′)

×
(

fk′(v′)
Mk′(v′)

− fk(v)

Mk(v)

)(
gk′(v′)

Mk′(v′)
− gk(v)

Mk(v)

)
dv dv′.

Then (ii) and (iii) are easy consequences from this identity. It follows,

(KerQ)⊥ =
{
f ∈ L2

M s.t.
∑

k

∫
fk(v) dv = 0

}
.

Since Q is obviously a closed operator in L2
M the equation Q(f ) = g admits a solution iff

g ∈ (KerQ)⊥. This solution is unique in (KerQ)⊥. �

Corollary 2.2 There exists � ∈ L2
M such that for all k ≥ 1,

Q(�)k = −vMk and
∑

k

∫
R

�k dv = 0.

Then we can define the diffusion coefficient as

D =
∑

k

∫
R

�k ⊗ v dv. (2.2)

Remark 2.3 We recognize in formula (2.2) the classical expression for the diffusion coef-
ficient in all the problem of approximation of transport process by diffusion. This formula,
known as the Kubo’s formula, is still valid in higher dimensions and under Assumption (A.1)
on the cross-section it defines a positive definite matrix [17].

2.2 A Priori Estimate

A key argument in our study is to obtain uniform estimates on the unknows of the system. We
use the entropy defined in (1.13). All along the paper, we will use the following functional
space:

Lp
x Lq

z (�) =
{
u ∈ L1

loc(�) such that

‖u‖L
p
x L

q
z (�) =

(∫ b

a

‖u(x, ·)‖p

L
q
z (0,1)

dx

)1/p

< +∞
}
.

We recall (see Lemma 2.2 of [4]).

Lemma 2.4 Let � = (a, b)× (0,1) ⊂ R
2. Then the space H 1(�) is continuously imbedded

in L∞
x L2

z(�).

We notice that this embedding does not hold if � = ω × (0,1) for ω a bounded domain
of R

2, i.e. if the transport is assumed to take place in a bounded domain of R
2.
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Proposition 2.5 Let T > 0 and let (V η, (f
η

k , εη

k,χ
η

k )k≥1) be a renormalized solution on the
interval [0, T ] of the Boltzmann-Schrödinger-Poisson system (1.10)–(1.1)–(1.2) with bound-
ary conditions (1.9)–(1.8). We assume that (A.1) and (A.2) hold and that

((1 + v2 + εη

k + logf
η

k )f
η

k )k≥1 ∈ L∞([0, T ], �1(L1((a, b) × R)))

and

V η ∈ L∞([0, T ],H 1(�)).

Then, there exists a nonnegative constant C depending only on initial data such that,

∀t ∈ [0, T ], 0 ≤ Wη(t) + α1

η2

∫ t

0
Rη(s) ds ≤ C, (2.3)

where the entropy Wη is defined in (1.13) and the dissipation rate Rη is given in (1.14).
Moreover,

∀t ∈ [0, T ],
∫ b

a

Nη
s (t, x) = Nin =

∫ b

a

N in
s (x) dx. (2.4)

Proof This result is proved in the case of smooth solutions for which all calculations are
justified. In a general case, we regularize the system to have smooth solutions and pass to
the limit in the estimate obtained for these smooth solutions. These steps are explained in
Sect. 5.2.

It is readily seen that with our assumption on the initial condition (A.2), the initial entropy
is bounded and that with our boundary conditions, the system conserves the mass which

implies (2.4). Multiplying (1.10) by (1 + logf
η

k + |v|2
2 + εη

k), integrating on (a, b) × R and
summing over k, we get

∑
k

∫ ∫
∂tf

η

k

(
logf

η

k + |v|2
2

+ εη

k + 1

)
dx dv

= d

dt

∑
k

∫ ∫
f

η

k

(
logf

η

k + |v|2
2

+ εη

k

)
dx dv −

∑
k

∫ ∫
f

η

k ∂tεη

k dx dv.

Moreover, using the notation 〈f 〉 = ∫ 1
0 f (z) dz, we have ∂tεη

k = 〈|χη

k |2∂tV
η〉 (see Lem-

ma A.2 in the Appendix). Thus we obtain:

∑
k

∫ ∫
f

η

k ∂tεη

k dx dv

=
∑

k

∫ ∫ ∫
f

η

k |χη

k |2∂tV
η dx dv dz

= d

dt

∑
k

∫ ∫
f

η

k 〈|χη

k |2V η〉dx dv − 1

2

d

dt

∫ ∫
|∇x,zV

η|2 dx dz,

where we use the Poisson equation (1.2). Therefore,
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∑
k

∫ ∫
∂tf

η

k

(
logf

η

k + |v|2
2

+ εη

k + 1

)
dx dv

= 1

2

d

dt

∫ ∫
|∇x,zV

η|2 dx dz

+ d

dt

∑
k

∫ ∫
f

η

k

(
logf

η

k + |v|2
2

+ εη

k − 〈|χη

k |2V η〉
)

dx dv. (2.5)

And from the Schrödinger equation (1.1) we have:

1

2
〈|∂zχ

η

k |2〉 + 〈|χη

k |2V η〉 = εη

k .

With our boundary condition (1.8) we have after an integration by parts

∑
k

∫ ∫ (
v · ∂xf

η

k + ∂xεη

k · ∂vf
η

k

)(
logf

η

k + |v|2
2

+ εη

k + 1

)
dx dv

=
[∑

k

∫
R

vf
η

k

(
logf

η

k + |v|2
2

+ εη

k

)
dv

]b

a

= 0. (2.6)

Finally, with (1.5) and since
∑

k

∫
Qη(f η)k dv = 0,

∑
k

∫
Qη(f η)k

(
logf

η

k + |v|2
2

+ εη

k + 1

)
dv

= 1

2

∑
k,k′

∫ ∫
αk,k′(Mη

k(v)f
η

k′(v
′) − Mη

k′(v
′)f η

k (v)) log

[(
f

η

k (v)

Mη

k(v)

)( Mη

k′(v′)
f

η

k′(v′)

)]
dv dv′.

Using the relation (a1 − a2) log(a1/a2) ≥ (
√

a1 − √
a2)

2, for all positive a and b, and the
Jensen inequality, we obtain:

∑
k

∫ ∫
Qη(f η)k

(
logf

η

k + |v|2
2

+ εη

k + 1

)
dv dx ≤ −α1 Rη(t). (2.7)

Finally, (2.5), (2.6) and (2.7) lead to:

d

dt

∑
k

∫ ∫
f

η

k

(
logf

η

k + |v|2
2

+ 1

2
〈|∂zχ

η

k |2〉
)

dx dv

+ 1

2

d

dt

∫ ∫
|∇x,zV

η|2 dx dz + α1

η2
Rη(t) ≤ 0. (2.8)

From (2.8) we have after an integration on [0, T ],
∑

k

∫ ∫
f

η

k

(
logf

η

k + |v|2
2

+ k2

2
− 1

)
dx dv + 1

2

∫ ∫
|∇x,zV

η|2 dx dz

+ α1

η2

∫ T

0
Rη(t) dt ≤ C1 +

∑
k

∫ b

a

ρ
η

k

(
k2

2
− 1

2
〈|∂zχ

η

k |2〉
)

dx. (2.9)
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Moreover, since the potential V η is nonnegative, we have with the Hölder inequality

1

2
〈|∂zχ

η

k |2〉 = εη

k − 〈|χη

k |2V η〉 ≥ εk[0] − ‖χη

k ‖2
L4

z (0,1)
‖V η‖L2

z (0,1).

An interpolation and Lemma A.4 imply the existence of a nonnegative constant C2 such that

‖χη

k ‖2
L4

z (0,1)
≤ C‖χη

k ‖L2
z (0,1)‖χη

k ‖L∞
z (0,1) ≤ C2(1 + ‖V η‖1/2

L2
z (0,1)

).

Since εk[0] = 1
2π2k2, we deduce that

k2

2
− 1

2
〈|∂zχ

η

k |2〉 ≤ 1

2
k2 − 1

2
π2k2 + C2(1 + ‖V η‖1/2

L2
z (0,1)

) ≤ C2(1 + ‖V η‖1/2

L2
z (0,1)

). (2.10)

By the Sobolev embedding H 1(�) ↪→ L∞
x L2

z(�), we have

∑
k

∫ b

a

ρ
η

k

(
k2

2
− 1

2
〈|∂zχ

η

k |2〉
)

dx ≤ C3‖ρη

k ‖�1(L1(a,b))(1 + ‖V η‖1/2
H 1(�)

)

= C3 Nin(1 + ‖V η‖1/2
H 1(�)

). (2.11)

This last inequality in (2.9) provides∫ ∫
|∇x,zV

η|2 dx dz ≤ C4 + C5‖V η‖1/2
H 1(�)

.

Thus using the Poincaré inequality, we deduce that ‖V η‖H 1(�) is bounded. Then (2.9) and
(2.11) provide the desired estimate. �

Corollary 2.6 Let T > 0 and (f
η

k )k≥1 such as in Proposition 2.5, there exists a constant
CT > 0 such that:

∀t ∈ [0, T ],
∑

k

∫ ∫
(a,b)×R

f
η

k (| logf
η

k | + |v|2 + k2 + 1) dx dv ≤ CT ,

∫ b

a

(Nη
s logNη

s − Nη
s + 1) dx ≤ CT ,

∫ T

0

∫ b

a

J η(t, x) dx dt ≤ CT .

Proof The second estimate results from the Jensen inequality. The first follows from the
remark y| logy| ≤ y logy + 2/e for all y > 0. Since the function v �→ vMη

k is odd, we have

J η = 1

η

∑
k

∫
R

v
(√

f
η

k +
√

N
η
s Mη

k

)(√
f

η

k −
√

N
η
s Mη

k

)
dv.

Using the Cauchy-Schwarz inequality, we deduce that

∫ b

a

J η(t, x) dx ≤ 2

(∑
k

∫ ∫
v2(f

η

k + Nη
s Mη

k) dx dv

)1/2

(Rη(t))1/2.

We conclude by using (2.3). �
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Remark 2.7 It could seem more “natural” to consider the relative entropy with respect to the
physical equilibrium M rather than Wη in (1.13). However it this case the time derivative
of the entropy with respect to time will involve terms ∂tεk for which we have no estimate.
This is the reason why we choose the time-independent quantity M in (1.13).

3 The Schrödinger-Poisson System

This section is devoted to the study of the “quasi-static” Schrödinger-Poisson system defined
by: {

− 1
2 ∂2

z χk + V χk = εkχk (k ≥ 1),

χk(t, x, ·) ∈ H 1
0 (0,1),

∫ 1
0 χk χ� dz = δk�,

(3.1)

−�x,zV =
∑

k

ρk|χk|2, (3.2)

where we consider that ρ = (ρk)k≥1 is given in L∞((0, T ), �1(L1(a, b))) and satisfies:

(H1) ∀k ≥ 1, ρk ≥ 0 and there exists a nonnegative constant CT such that

∀t ∈ [0, T ],
∑

k

∫ b

a

ρk(1 + k2) dx ≤ CT . (3.3)

We denote Ns = ∑
k ρk . The system is completed by the boundary conditions (1.3). In

the sequel we will use the functional space H 1
01 = {V ∈ H 1(�) : V (x,0) = V (x,1) = 0}.

Proposition 3.1 (Existence and uniqueness) Let us suppose that ρ = (ρk)k≥1 is given in
L∞((0, T ), �1(L1(a, b))) and satisfies H1. Then the Schrödinger-Poisson system (3.1)–(3.2)
admits a solution in H 1

01.
Moreover, denoting N = ‖Ns‖L∞((0,T ),L1(a,b)) if N is small enough, this solution

(V , (εk,χk)k≥1) is unique.

This result is obtained thanks to an idea of Nier [24] which has been developed in [4].
The principle is based on the fact that a weak solution of (3.1)–(3.2) is a critical point of a
certain functional. Namely, we consider the functional defined on H 1

01 by

Jρ(V ) = 1

2

∫ ∫
�

|∇V |2 dx dz −
∑
k≥1

∫ b

a

ρkεk[V ]dx = J0(V ) + J1(V ,ρ). (3.4)

It is proved in Lemma 3.2 that this functional admits a minimizer and that this minimizer
is a weak solution of (3.1)–(3.2). Because of the non-convexity of Jρ , its minimizers are
not unique. Hence the uniqueness is obtained in Lemma 3.3 only under the assumption of
smallness for N .

Lemma 3.2 Assume that (ρk)k≥1 ∈ L∞((0, T ), �1(L1(a, b))) and satisfy H1. Then the func-
tional Jρ defined in (3.4) is continuous, locally Lipschitz and weakly lower semicontinuous
on H 1

01. It is coercive: there exist nonnegative constants C1, C2 and C3 such that for all
t ∈ (0, T ),

Jρ(V ) ≥ C1‖V ‖2
H 1(�)

− C2‖V ‖3/2
H 1(�)

− C3. (3.5)

Thus the system (3.1)–(3.2) admits a solution (V , (εk,χk)k≥1) with V ∈ L∞((0, T ),H 1
01).
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Proof The functional J0 is clearly continuous and strongly convex on H 1
01. For the func-

tional J1, we use the properties of εk[V ] summarized in (A.8) to prove

|J1(V ,ρ) − J1(Ṽ , ρ)| ≤
∑
k≥1

∫ b

a

ρk|εk[V ] − εk[Ṽ ]|dx

≤ C1

∑
k≥1

∫ b

a

ρk(1 + ‖V ‖1/2

L2
z (0,1)

+ ‖Ṽ ‖1/2

L2
z (0,1)

)‖V − Ṽ ‖L2
z (0,1) dx.

(3.6)

If we use the Sobolev embedding stated in Lemma 2.4, we obtain

|J1(V ,ρ) − J1(Ṽ , ρ)| ≤ C2(1 + ‖V ‖1/2
H 1(�)

+ ‖Ṽ ‖1/2
H 1(�)

)‖Ns‖L1(a,b)‖V − Ṽ ‖H 1(�). (3.7)

Hence J1(·, ρ) is Lipschitz and weakly continuous on H 1
01. Now if we take Ṽ = 0 in (3.7),

from H1, we have that 0 ≥ J1(0, ρ) ≥ −CT . Thus,

Jρ(V ) ≥ 1

2
‖∇V ‖2

L2(�)
− C3(1 + ‖V ‖1/2

H 1(�)
)‖V ‖H 1(�) − C4.

We apply the Poincaré inequality in H 1
01 to find (3.5). Hence the functional Jρ admits a

minimizer in H 1
01. Moreover, from Lemma A.2, it is clear that Jρ is Gâteaux differentiable

on H 1
01 and the differential of Jρ in the direction W ∈ H 1(�) is:

dV Jρ(V ) · W =
∫ ∫

�

∇V · ∇W dx dz −
∑

k

∫ b

a

ρk〈|χk[V ]|2W 〉dx.

Thus each minimizer of the functional Jρ is a weak solution of the Schrödinger-Poisson
system (3.1)–(3.2). �

Lemma 3.3 Let (ρk)k≥1 given in L∞((0, T ), �1(L1(a, b))) and satisfying H1. Then, for
N := ‖Ns‖L∞((0,T ),L1(a,b)) small enough, the corresponding solution (V , (εk[V ], χk[V ])k≥1)

of the Schrödinger-Poisson system (3.1)–(3.2) is unique.

Proof Let (ρk)k≥1 be in L∞((0, T ), �1(L1(a, b))) satisfying H1. We assume that we can
find two solutions of the Schrödinger–Poisson system denoted V and Ṽ . Multiplying the
Poisson equation (3.2) by (Ṽ − V ) and integrating provides:

∫ ∫
�

|∇(Ṽ − V )|2 dx dz =
∑

k

∫ b

a

ρk〈(|χk[Ṽ ]|2 − |χk[V ]|2)(Ṽ − V )〉dx. (3.8)

From (A.3), we deduce that we have

∫ ∫
�

|∇(Ṽ − V )|2 dx dz ≤ C1

∫ b

a

Ns e
C2(‖V ‖

L2
z (0,1)

+‖Ṽ ‖
L2

z (0,1)
)‖V − Ṽ ‖2

L2
z (0,1)

dx.

Then the Sobolev embedding H 1(�) ↪→ L∞
x L2

z(�) and the Poincaré inequality lead to

‖V − Ṽ ‖2
H 1(�)

≤ C2e
C4(‖V ‖

H1(�)
+‖Ṽ ‖

H1(�)
)‖Ns‖L1(a,b)‖V − Ṽ ‖2

H 1(�)
. (3.9)
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From Lemma 3.2 we know that V and Ṽ are bounded in H 1(�). Thus, there exists a non-
negative constant C3 such that

‖V − Ṽ ‖2
H 1(�)

≤ C3 N ‖V − Ṽ ‖2
H 1(�)

. (3.10)

Thus it suffices to chose N small enough such that C3 N ≤ 1/2 to prove that V = Ṽ on
[0, T ] × �. �

Proposition 3.4 (Continuity) Let (ρk)k≥1 and (ρ̃k)k≥1 in L∞((0, T ), �1(L1(a, b))) and sat-

isfying H1. We denote by N := ‖Ns‖L∞((0,T ),L1(a,b)), Ñ := ‖Ñs‖L∞((0,T ),L1(a,b)), V and Ṽ the
corresponding solutions of the Schrödinger-Poisson system (3.1)–(3.2). Then there exists N0

such that if max(N , Ñ ) ≤ N0, then for all p ≥ 1

‖V − Ṽ ‖Lp([0,T ],H 1(�)) ≤ CT ‖ρk − ρ̃k‖Lp([0,T ],�1(L1(a,b))),

where CT is a nonnegative constant depending only on T .

Proof Let (ρk)k≥1 and (ρ̃k)k≥1 be two sequences in L∞((0, T ), �1(L1(a, b))) satisfying H1.
Multiplying the Poisson equation (3.2) by (V − Ṽ ) and integrating provides:

∫ ∫
�

|∇(V − Ṽ )|2 dx dz =
∑

k

∫ ∫
�

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dx dz

+
∑

k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉dx. (3.11)

We treat the second term as in the proof of Lemma 3.3 and obtain:

∑
k

∫ b

a

ρ̃k〈(|χk[V ]|2 − |χk[Ṽ ]|2)(V − Ṽ )〉dx ≤ C1 Ñ ‖V − Ṽ ‖2
H 1(�)

, (3.12)

where C1 is a nonnegative constant. For the first term, we have with Lemma A.1

∑
k

∫ ∫
�

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dx dz ≤ C2

∫ b

a

∑
k≥1

|ρk − ρ̃k|eC3‖V ‖
L2

z ‖V − Ṽ ‖L2
z
dx.

And by the Sobolev embedding H 1(�) ↪→ L∞
x L2

z(�) and the bound of V and Ṽ in H 1(�),
we have

∑
k≥1

∫ b

a

(ρk − ρ̃k)|χk[V ]|2(V − Ṽ ) dx dz ≤ C4‖ρk − ρ̃k‖�1(L1(a,b))‖V − Ṽ ‖H 1(�). (3.13)

Therefore if we inject (3.12) and (3.13) in (3.11), we obtain thanks to the Poincaré inequal-
ity:

‖V − Ṽ ‖H 1(�) ≤ C5 N ‖V − Ṽ ‖H 1(�) + C6‖ρk − ρ̃k‖�1(L1(a,b)).

The result follows straightforwardly after an integration in time for N0 small enough. �
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4 Diffusive Limit

In this section we prove Theorem 1.3 assuming that we have constructed a renormalized
solution ((f

η

k )k≥1,V
η) of the Boltzmann-Schrödinger-Poisson system (1.10)–(1.12) such as

in Theorem 1.2.
Adapting the arguments in [21], we prove in a first subsection the convergence up to an

extraction of the solution ((f
η

k )k≥1,V
η) as η goes to 0. In a second subsection, we show that

the limit is a solution of the (DDSP) system.

4.1 Convergence of the Renormalized Solutions

Let f η be a renormalized solution of the Boltzmann equation. The a priori estimates of
Corollary 2.6 imply that f η is weakly relatively compact in �1(L1([0, T ] × (a, b) × R)).
The two following lemmata show that we can apply the averaging Lemma 1.4 and that
it implies the strong convergence of Nη

s . The convergence of (f η,V η) is then proved in
Proposition 4.3 using the smallness assumption on initial data.

Let us denote, for δ > 0 fixed, βδ an approximation of the identity, namely βδ(s) =
1
δ
β(δs). We choose β and C∞ function satisfying β(s) = s for s ≤ 1, 0 ≤ β ′(s) ≤ 1 for all s

and β(s) = 2 for s ≥ 3.

Lemma 4.1 Let f η be a renormalized solution of the Boltzmann equation such as in Theo-
rem 1.2. Then Qη(f η)

η
is weakly relatively compact in �1(L1((0, T ) × (a, b) × R)).

Proof We define

r
η

k =
√

f
η

k − √
N

η
s Mη

k

η
√

Mη

k

. (4.1)

Thanks to the dissipation rate control (1.17), we have

∑
k

∫ T

0

∫ ∫
|rη

k |2 Mη

k dx dv dt ≤ C. (4.2)

Using rη we can rewrite

f
η

k = Nη
s Mη

k + 2η
√

N
η
s Mη

kr
η

k + η2(r
η

k )2 Mη

k .

The result is then obtained thanks to a straightforward adaptation of the proof of Proposi-
tion 3.3 in [21]. �

Lemma 4.2 Let Nη
s = ∑

k

∫
f

η

k dv with f η such as in Theorem 1.2. Then Nη
s is relatively

compact in L1((0, T ) × (a, b)).

Proof We can rewrite the renormalized Boltzmann equation:

η∂tβδ(f
η

k ) + v · ∂xβδ(f
η

k ) = h
η

k + ∂vg
η

k ,

where

h
η

k = 1

η
Qη(f η)kβ

′
δ(f

η

k ) and g
η

k = ∂xεη

k βδ(f
η

k ).
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With our choice of βδ , we have βδ(f
η

k ) ≤ 2/δ and βδ(f
η

k ) ≤ f
η

k then βδ(f
η) ∈ �∞(L∞

t,x,v) ∩
�1(L1

t,x,v). It yields that βδ(f
η) ∈ �2(L2

t,x,v). Since we have 0 ≤ β ′
δ(f

η

k ) ≤ 1 and 1
η
Qη(f η)

weakly relatively compact in �1(L1
t,x,v), we deduce that h

η

k is weakly relatively compact
in �1(L1

t,x,v). The spectral properties of the Hamiltonian (see Lemma A.2) imply ∂xεk =
〈|χk|2∂xV 〉. From Lemma A.4 and the Cauchy-Schwarz inequality, we deduce

∑
k≥1

∫
|∂xεη

k βδ(f
η

k )|dx dv ≤ C√
δ
(1 + ‖V η‖H 1(�))‖V η‖H 1(�)

(∑
k

∫
|βδ(f

η

k )|dx dv

)1/2

.

The bound of V η in H 1(�) and of f η in �1(L1
t,x,v) implies that g

η

k is bounded in �1(L1
t,x,v).

Thus we can apply the averaging Lemma 1.4. We have that for all ψk ∈ D(R) with
(ψk)k≥1 all null except for a finite number of them,

lim
y≥0

(
sup
η≤1

∥∥∥∥∑
k≥1

∫
R

(βδ(f
η

k )(t, x + y, v) − βδ(f
η

k )(t, x, v))ψk(v) dv

∥∥∥∥
L1

t,x

)
= 0. (4.3)

Next, using the fact that ((1+v2 +k2)βδ(f
η

k ))η is bounded in L∞(0, T ;�1(L1
x,v)), we deduce

from standard argument that we can take ψk(v) to be constant equal to 1 in (4.3). Moreover
the definition of βδ and the equi-integrability of f

η

k implies

sup
η≤1

‖βδ(f
η) − f η‖�1(L1

t,x,v ) → 0 as δ → 0. (4.4)

Let ε > 0, we have for all 1 ≥ η > 0∫
|Nη

s (t, x + y) − Nη
s (t, x)|dt dx

≤
∑

k

∫
|f η

k (t, x + y, v) − βδ(f
η

k )(t, x + y, v)|dt dx dv

+
∑

k

∫
|βδ(f

η

k ) − f
η

k |dt dx dv

+
∫ ∣∣∣∣∑

k

∫
R

βδ(f
η

k )(t, x + y, v) dv −
∑

k

∫
R

βδ(f
η

k )(t, x, v) dv

∣∣∣∣dt dx.

We fix δ such that the first and the second term of the right hand side is < ε/3. For such a
δ > 0, we use (4.3) to bound the third term by ε/3 for y small enough. Then

‖Nη
s (t, x + y) − Nη

s (t, x)‖L1
t,x

→ 0 when y → 0 uniformly in η.

Therefore the sequence (Nη
s (t, ·))η is relatively compact in L1

x for all t ∈ [0, T ]. From
the local mass conservation (1.16), we obtain that ∂tN

η
s = −∂xJ

η , which is bounded in
L1(0, T ;W−1,1(a, b)) thanks to Corollary 2.6. We deduce the relative strong compactness
of (Nη

s )η in L1
t,x . Therefore we can extract a subsequence such that Nη

s → Ns in L1((0, T )×
(a, b)) and a.e. By uniqueness of the weak limit, there exists ρ ∈ �1(L1((0, T ) × (a, b)))

such that Ns = ∑
k ρk and ρ

η

k ⇀ ρk weakly in �1(L1
t,x). �

Proposition 4.3 Let (f η,V η) be a renormalized solution of the coupled Boltzmann-
Schrödinger-Poisson system which satisfies (i), (ii) and (iii) of Theorem 1.2. There exist
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V in L∞((0, T ),H 1(�)) and Ns in L∞((0, T ),L1(a, b)) such that if Nin is small enough,
then up to an extraction we have

V η → V in L2((0, T ),H 1(�)) and

f η → Ns M in �1(L1((0, T ) × (a, b) × R)) and a.e.

Proof We have proved in Lemma 4.2 the strong and a.e. convergence of Nη
s towards Ns .

For this surface density Ns ∈ L∞
t L1

x , we solve the Schrödinger-Poisson system at the equi-
librium (1.19)–(1.20). It is proved in Proposition 3.1 of [34] that there exists a unique
V ∈ L∞([0, T ],H 1(�)) solution of (1.19)–(1.20). We show hereinafter that the strong con-
vergence in L1 of the surface density allows to prove that

‖V η − V ‖L2([0,T ],H 1(�)) → 0 as η → 0. (4.5)

In fact, we multiply the Poisson equation by (V η − V ) and integrate, we have

∫ T

0

∫ ∫
�

|∇(V η − V )|2 dx dz dt = I + II + III,

where

I =
∑

k

∫ T

0

∫ ∫
(a,b)×R

(f
η

k − Nη
s Mη

k )〈|χk[V η]|2(V η − V )〉dx dv dt,

II =
∑

k

∫ T

0

∫ ∫
(a,b)×R

Nη
s Mη

k〈(|χk[V η]|2 − |χk[V ]|2)(V η − V )〉dx dv dt,

III =
∑

k

∫ T

0

∫ ∫
(a,b)×R

(Nη
s Mη

k − Ns Mk)〈|χk[V ]|2(V η − V )〉dx dv dt.

We bound the first term thanks to the estimate on the dissipation rate (2.3). Lemma A.4
provides

|I | ≤ C1

∑
k

∫ T

0

∫ ∫
(a,b)×R

|f η

k − Nη
s Mη

k | e
C2‖V η‖

L2
z ‖V η − V ‖L2

z
dx dv dt.

Thus Lemma 2.4 implies that

|I | ≤ C3

∑
k

∫ T

0

∫ ∫
(a,b)×R

|f η

k − Nη
s Mη

k |dx dv dt

≤ 4C3‖Nη
s ‖1/2

L1
t,x

(∫ T

0
Rη(t) dt

)1/2

, (4.6)

where we use the Cauchy-Schwarz inequality. Then Proposition 2.5 implies that |I | ≤ C4η.
For the second term we use the fact that the Maxwellian Mk decays with respect to k.
Therefore using Lemma A.2, we deduce

II =
∫ T

0

∫ ∫
(a,b)×R

Nη
s

∫ 1

0

1

2

∑
k,��=k

Mη

k − Mη

�

εσ
k − εσ

�

〈χσ
k (V η − V )χσ

� 〉2 dσ dx dv dt ≤ 0, (4.7)
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where we denote εσ
k := εk[σV + (1 − σ)V η] and χσ

k := χk[σV + (1 − σ)V η]. Finally,
the bound on the potential in L∞([0, T ],H 1(�)) combined with Lemma A.4 furnishes the
estimate

|III| ≤ C5

∫ T

0
‖Ns M − Nη

s Mη‖�1(L1
x,v )‖V η − V ‖H 1

x,z
dt. (4.8)

Moreover, using Lemma A.2, we can derive the function s �→ e−εk [sV +(1−s)V η]/Z[sV + (1 −
s)V η] and therefore obtain

Mη

k − Mk =
∫ 1

0

e−v2/2

2π

e−εs
k

Z s

(∑
�〈|χs

� |2(V η − V )〉e−εs
k

Z s
− 〈|χs

k |2(V η − V )〉
)

ds,

where we use the notation f s := f [sV + (1 − s)V η]. Then by Lemma A.1 we have

|Mη

k − Mk| ≤ C1 e
C2(‖V η‖

L2
z
+‖V ‖

L2
z
)‖V − V η‖L2

z

∫ 1

0

e−v2/2−εs
k

2π Z s
ds.

Thus the Sobolev embedding H 1(�) ↪→ L∞
x L2

z(�) provides

∑
k

‖Mη

k − Mk‖L∞
x L1

v
≤ C‖V η − V ‖H 1(�). (4.9)

This implies that

‖Ns M − Nη
s Mη‖�1(L1

x,v ) ≤ ‖Ns − Nη
s ‖L1

x
+ ‖Nη

s (M − Mη)‖�1(L1
x,v )

≤ ‖Ns − Nη
s ‖L1

x
+ CNin‖V η − V ‖H 1(�), (4.10)

where we use (4.9) for the last inequality. Finally, from (4.8) we can bound the term III by

|III| ≤ C(‖Ns − Nη
s ‖L1

t,x
+ Nin‖V η − V ‖2

L2([0,T ],H 1(�))
). (4.11)

Thus, (4.6), (4.7) and (4.11) provide with the Poincaré inequality

‖V η − V ‖2
L2([0,T ],H 1(�))

≤ C(η + ‖Ns − Nη
s ‖L1

t,x
+ Nin‖V η − V ‖2

L2([0,T ],H 1(�))
).

Finally, if Nin is small enough, we deduce that V η → V as η → 0 in L2([0, T ],H 1(�)).
The convergence of the distribution function f η is yet obtained thanks to the estimate

on the dissipation rate Rη (1.17). Then the properties of the eigenvalues of the Hamiltonian
(A.2) and the embedding of H 1(�) into L∞

x L2
z(�) (Lemma 2.4) show that

‖εk[V η] − εk[V ]‖L2([0,T ],L∞(a,b)) ≤ C‖V η − V ‖L2([0,T ],H 1(�)) → 0 as η → 0.

Moreover, by the Cauchy-Schwarz inequality,

‖f η − Ns M‖�1(L1
t,x,v ) ≤ ‖f η − Nη

s Mη‖�1(L1
t,x,v ) + ‖Nη

s Mη − Ns M‖�1(L1
t,x,v )

≤ 4‖Nη
s ‖1/2

L1
t,x

(∫ T

0
Rη(t) dt

)1/2

+ ‖Nη
s Mη − Ns M‖�1(L1

t,x,v ).

Thus the entropy inequality (2.3) and (4.10) yield that f η → Ns M strongly in �1(L1
t,x,v). �
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4.2 The Limit Equation

To end the proof of Theorem 1.3, we have to prove that the limit Ns satisfies the drift-
diffusion equation (1.18). Thanks to the local mass conservation (1.16), it suffices to study
the limit of the current J η .

Proposition 4.4 Let (f η,V η) be a solution of the renormalized system defined in Theo-
rem 1.2, then the current J η , defined by

J η := 1

η

∑
k

∫
R2

vf
η

k dv, (4.12)

satisfies {
J η ⇀ J = −D(∂xNs + Ns∂xVs) in weak-L1

t,x ,

J (t, a) = J (t, b) = 0,

where the diffusion matrix D is defined in (2.2) and the autoconsistant potential is denoted

Vs = − log

(∑
k≥1

e−εk [V ]
)

.

The proof of this result is based on an idea of Masmoudi and Tayeb [21] consisting in
using the point (i) of Theorem 1.2. Because of the dependence on k and of the non linear
coupling, the proof is not straightforward. Then we detail the proof hereinafter.

Proof Thanks to Proposition 4.3 we have

(√
f

η

k

)
k≥1

→ (√
Ns Mk

)
k≥1

in �2(L2
t,x,v),

and the definition of r
η

k (4.1) implies

J η = 1

η

∑
k

∫
R2

vf
η

k dv = 2
√

N
η
s

∑
k

∫
R2

vr
η

k Mη

k dv + O(η)�1(L1
t,x,v ).

Besides, we have Mη

k ≤ e−v2/2−π2k2/2 (see Appendix) and the bound (4.2) show that
the sequence (rη Mη/e−(v2+π2k2)/4)η is bounded in �2(L2

t,x,v). Thus up to an extraction,

there is a u in �2(L2
t,x,v) such that rη Mη/e−(v2+π2k2)/4 ⇀ u weakly in �2(L2

t,x,v). Set-

ting r = ue−(v2+π2k2)/4/M, we get that (rη Mη/e−(v2+π2k2)/4) weakly converges towards
(rM/e−(v2+π2k2)/4) in �2(L2

t,x,v). We deduce

∑
k

∫
R2

vr
η

k Mη

k dv =
∑

k

∫
R2

ve−(v2+π2k2)/4 r
η

k Mη

k

e−(v2+π2k2)/4
dv

⇀
∑

k

∫
R2

vrk Mk dv in weak-L2
t,x .

Moreover, the strong convergence
√

N
η
s → √

Ns in L2
t,x implies that

J η ⇀ J := 2
√

Ns

∑
k

∫
R2

vrk Mk dv in weak-L1
t,x . (4.13)
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Since we have
∑

k

∫
vMk dv = 0, Proposition 2.1 shows that we can define Q−1(vM) and

the selfadjointness of the operator Q leads to

J = 2
√

Ns

∑
k

∫
R2

Q−1(vM)kQ(rM)k

dv

Mk

. (4.14)

Now, we will find an expression of J . Considering again r
η

k , we have

Qη(f η)k

η
= 2

√
N

η
s Qη(rη Mη)k + ηQη((rη)2 Mη)k.

With (4.2), the second term in the right hand side is O(η)�1(L1
t,x,v ). For the first one, one

can prove easily that ∀f ∈ �2(L2
t,x,v), we have ‖Qη(f ) − Q(f )‖�2(L2

t,x,v ) → 0. The weak

convergence of (rη Mη) in �2(L2
t,x,v) implies then

Qη(rη Mη) ⇀ Q(rM) weakly in �2(L2
t,x,v).

With the strong convergence in L2
t,x of

√
N

η
s , we deduce the weak limit:

Qη(f η)k

η
= 2

√
N

η
s Mk

Qη(rη Mη)k√
Mk

+ O(η)�1(L1
t,x,v )

⇀ 2
√

NsQ(rM)k in �1(L1
t,x,v). (4.15)

We recall that for every λ > 0, we have defined �
η

k,λ = (f
η

k + λ exp(− 1
2 (v2 + k2)))1/2. Thus

�
η

k,λ → �k,λ = (fk + λe− 1
2 (v2+k2))1/2 strongly in �2(L2

t,x,v).

Using Lemmata A.1 and A.2 and the estimate (A.3), we can prove that

|∂xεη

k − ∂xεk| ≤ |〈(|χη

k |2 − |χk|2)∂xV
η〉| + |〈|χk|2∂x(V

η − V )〉|
≤ C1e

C2‖V ‖
L2

z (e
C2‖V η‖

L2
z ‖∂xV

η‖L2
z
‖V − V η‖L2

z
+ ‖∂x(V − V η)‖L2

z
).

Thus the strong convergence of V η in L2
t (H

1
x,z) with the Sobolev embedding H 1(�) ↪→

L∞
x L2

z(�) imply that

∂xεη

k → ∂xεk strongly in �2(L2
t,x).

Therefore,

∂xεη

k �
η

k,λ ⇀ ∂xεk �k,λ weakly in L1
t,x,v.

Thus we can take the weak limit as η → 0 in (1.15). For all k ≥ 1, we find

v · ∂x�k,λ − ∂v(∂xεk �k,λ) =
√

NsQ(rM)k

�k,λ

+ λ∂xεk

ve− 1
2 (v2+k2)

2�k,λ

.

And if we make λ → 0 in the resulting equation, we find(
∂x

√
Ns + 1

2

√
Ns∂xVs

)
· vMk = Q(rM)k, (4.16)
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where we take Vs = − log
∑

k e−εk . And we verify that the product
√

Ns∂xVs has a meaning
in L1

t,x . Now, with (4.13) and (4.16), we can conclude

J = −D

√
Ns

(
∂x

√
Ns + 1

2

√
Ns∂xVs

)
, (4.17)

where the symmetric positive diffusion matrix, defined in (2.2), is given by

D = −
∑

k

∫
R

v ⊗ Q−1(vM)k dv.

Besides, with our choice of boundary conditions (1.8) we have that

∑
k≥1

∫
R

vf
η

k (t, a, v) dv =
∑
k≥1

∫
R

vf
η

k (t, b, v) dv = 0.

Thus as η goes to 0, it provides that J (t, a) = 0 and J (t, b) = 0. Now, if we use Lemma
4.5 combined with (4.16), we can rewrite the current J and the proof of Proposition 4.4 is
complete. �

Lemma 4.5 Let Ns and V be defined in Proposition 4.3. If we suppose that

∂x

√
Ns + 1

2

√
Ns∂xVs = G ∈ L2((0, T ) × (a, b)), (4.18)

where Vs = − log(
∑

k≥1 e−εk [V ]). Then we have

√
Ns ∈ L2((0, T ),H 1(a, b)) and

√
Ns∂xVs ∈ L2((0, T ) × (a, b)).

Proof We have
√

Ns bounded in L2
t,x and V in L2

t H
1
x , then from Lemma A.1, we deduce

that
√

Ns∂xVs ∈ L1
t,x . It follows that ∂x

√
Ns ∈ L1

t,x . We consider the approximation of the
identity βδ as before. Namely βδ(s) = 1

δ
β(δs) where β is a C∞(R+) function satisfying

β(s) = s for 0 ≤ s ≤ 1, β(s) = 2 for s ≥ 3 and 0 ≤ β ′(s) ≤ 1. If we denote ψ = √
Ns , we

have

∂xβδ(ψ) = ∂xψβ ′
δ(ψ).

Hence we can renormalize (4.18):

∂xβδ(ψ) + 1

2
∂xVs β ′

δ(ψ)ψ = G̃

where G̃ = Gβ ′
δ(ψ) ≤ G. Multiplying (4.19) by ∂xβδ(ψ) and integrating provides∫ ∫

|∂xβδ(ψ)|2 dx dt + 1

2

∫ ∫
∂xVs · ∂xβδ(ψ)ψβ ′

δ(ψ)dx dt

=
∫ ∫

G̃∂xβδ(ψ)dx dt. (4.19)

By the Cauchy-Schwarz inequality we deduce∫ ∫
G̃∂xβδ(ψ)dx dt ≤ 1

2

∫ ∫
G̃2 dxdt + 1

2

∫ ∫
|∂xβδ(ψ)|2 dx dt.
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If we define β̃ by β̃(s) = ∫ s

0 τβ ′(s)2 dτ and β̃δ(s) = 1
δ2 β̃(δs). Then, β̃δ(s) tends to s2

2 when
δ goes to 0 and we have

∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ)dx =

∫ b

a

∂xVs · ∂xβ̃δ(ψ)dx = −
∫ b

a

∂2
xVs β̃δ(ψ)dx. (4.20)

Thanks to the Poisson equation (1.20), we have:

−∂2
xVs = −4

∑
k

e−εk (εk)
2

Z
+ 〈N2 + 4V 2 N〉

Ns

+ 2
∑

k

e−εk

Z
〈(V + εk)|∂zχk|2〉

− 1

Z
∑

k

∑
��=k

(
e−εk − e−ε�

εk − ε�

)
〈χkχ� ∂xV 〉2

+
∑

k

e−εk

Z
〈|χk|2 ∂xV 〉2 −

(∑
k

e−εk

Z
〈|χk|2 ∂xV 〉

)2

. (4.21)

By the Cauchy-Schwarz inequality, the sum of the last two terms of the right hand side is
nonnegative. Moreover, except for the first one, the other terms are obviously nonnegative.
Thus we have with (4.20),

∫ b

a

∂xVs · ∂xβδ(ψ)ψβ ′
δ(ψ)dx ≥ −4

∫ b

a

∑
k

e−εk (εk)
2

Z
β̃δ(ψ)dx.

Moreover, Lemma A.1 and the Sobolev embedding H 1(�) ↪→ L∞
x L2

z(�) imply that∑
k

e−εk (εk)2

Z is bounded in L∞(a, b). Thus (4.19) leads to

∫ ∫
|∂xβδ(ψ)|2 dt dx ≤

∫ ∫
G2 dt dx + 4

∫ b

a

∑
k

e−εk (εk)
2

Z
β̃δ(ψ)dx.

Passing to the limit δ → 0, we have

∫ ∫
|∂x

√
Ns |2 dt dx ≤

∫ ∫
G2 dt dx + 4

∫ b

a

∑
k

e−εk (εk)
2

Z
Ns dx.

Thus we deduce that
√

Ns ∈ L2((0, T ),H 1(a, b)) and with (4.18) we conclude easily that√
Ns∂xVs ∈ L2((0, T ) × (a, b)). �

5 Existence for the Overall Problem

5.1 The Truncated Boltzmann Equation

This part deals with well-known existence results and properties for the Boltzmann equation.
The results will be given for the matter of completeness without proof, we refer to [2, 4, 8,
11, 23] for more details. We shall assume that η > 0 is fixed, for the clarity of the notation
we chose η = 1, and that the force fields Fk := −∂xεk is given. We consider the Boltzmann
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equations indexed in k:⎧⎨
⎩

∂tfk + v · ∂xfk + Fk · ∂vfk = QR(f )k, (x, v) ∈ (a, b) × R, t ∈ [0, T ],
fk(t, a, v) = fk(t, a,−v), fk(t, b, v) = fk(t, b,−v) for t ∈ [0, T ], v > 0,

fk(0, x, v) = f in
k (x, v),

(5.1)

with the truncated collision operator:

QR(f )k =
∑
k′

∫
R

αR
k,k′(v, v′)(Mk(v)fk′(v′) − Mk′(v′)fk(v)) dv′, (5.2)

where the truncated cross-section is defined for a R > 0 by

αR
k,k′(v, v′) = αk,k′(v, v′)1k≤R,|v|≤R(k, v)1k′≤R,|v′ |≤R(k′, v′). (5.3)

A simple calculation shows that the regularized collision operator (5.2) is bounded in
�1(L1

t,x) and in �∞(L∞
t,x) and satisfies

∑
k

∫
R

QR(f )k dv = 0.
We can prove, using the characteristics techniques (see for instance [4, 6, 8]), existence

and uniqueness of weak solutions for each equation of (5.1):

Lemma 5.1 Let T > 0 and assume that the initial data satisfy for all k ≥ 1,

f in
k ≥ 0, (1 + v2)f in

k ∈ L1((a, b) × R), f in
k ∈ L∞((a, b) × R).

Assume that Fk ∈ L1((0, T ),W 1,1(a, b) ∩ L∞(a, b)) and that εk ≥ 1
2π2k2. Then (5.1) ad-

mits a unique weak solution fk ∈ L∞((0, T ),L1 ∩ L∞((a, b) × R)), fk ≥ 0 and

∀t ∈ [0, T ],
∑
k≥1

∫
R

fk(t, x, v) dv =
∑
k≥1

∫
R

f in
k (x, v) dv. (5.4)

Moreover if there exists δ > 2 such that (vδ + k2)f in
k ∈ �∞(L∞

x,v) then ∀t ∈ [0, T ],
∑
k≥1

‖fk(t, ·, ·)‖L∞((a,b)×R) ≤ C

(
1 +

(∫ t

0
sup
k≥1

‖Fk(s, ·)‖L∞
x

ds

)2)
, (5.5)

where C is a constant depending only on T and the data.

5.2 Proof of Theorem 1.2

In this section we give the sketch of the proof of Theorem 1.2. The structure of the coupling
invite us to use a fixed-point argument for the proof. However to define this fixed-point, the
uniqueness of a solution of the Schrödinger-Poisson system is needed. Thus we are not able
to prove the existence for every kind of initial condition but only for small initial data.

The main steps for the proof, described hereinafter, follow the idea of [2, 4, 21]: we regu-
larize the system thanks to a small parameter ε > 0, we construct solution of the regularized
system and we left go the parameter ε to 0 to recover solutions of the unregularized system.

First, let us define the linear regularization operator by

Rε : L1(�) → C∞(�),

V → Rε[V ](x, z) = (V ∗x ξε,x ∗z ξε,z)|�
(5.6)
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where V is the extension of V by zero outside � and ξε,x and ξε,z are C∞ nonnegative com-
pactly supported even approximations of the unity on R. Moreover, we can prove straight-
forwardly from convolution results that the regularization operator Rε satisfies the following
properties:

Lemma 5.2

(i) Rε is a bounded operator on L
p
x L

q
z (�) for 1 ≤ p,q ≤ +∞ and satisfies for all V ∈

L
p
x L

q
z (�),

‖Rε[V ]‖L
p
x L

q
z (�) ≤ ‖V ‖L

p
x L

q
z (�) and lim

ε→0
‖Rε[V ] − V ‖L

p
x L

q
z (�) = 0.

(ii) Rε is self-adjoint on L2(�) and for all V ∈ W 1,2(�),

∇xR
ε[V ] = Rε[∇xV ]; lim

ε→0
‖∇xR

ε[V ] − ∇xV ‖L2(�) = 0.

We introduce then the regularized system:⎧⎪⎨
⎪⎩

∂tf
ε
k,R + 1

η
(v · ∂xf

ε
k,R − ∂xεε

k,R · ∂vf
ε
k,R) = 1

η2 Qε
R(f ε

R)k, (x, v) ∈ (a, b) × R,

f ε
k,R(t, a, v) = f ε

k,R(t, a,−v), f ε
k,R(t, b, v) = f ε

k,R(t, b,−v), v > 0,

f ε
k,R(0, x, v) = f in

k (x, v),

(5.7)

{− 1
2∂2

z χε
k,R + Rε[V ε

R]χε
k,R = εε

k,R χε
k,R (k ≥ 1),

χε
k,R(t, x, ·) ∈ H 1

0 (0,1),
∫ 1

0 χε
k,R χε

�,R dz = δk�,
(5.8)

⎧⎪⎨
⎪⎩

−�x,zV
ε
R = Rε[∑k

∫
R

f ε
k,R|χε

k,R|2 dv],
dV ε

R

dx
(t, a, z) = dV ε

R

dx
(t, b, z) = 0, for z ∈ (0,1),

V ε
R(t, x,0) = V ε

R(t, x,1) = 0, for x ∈ (a, b).

(5.9)

We use the regularization of the collision operator:

Qε
R(f )k =

∑
k′

∫
R

αR
k,k′(v, v′)(Mε

k(v)fk′(v′) − Mε
k′(v′)fk(v)) dv′, (5.10)

where the truncated cross-section is defined for R > 0 in (5.3). We use the notations of
Sect. 1:

Nε
s =

∑
k≥1

∫
R

f ε
k dv and Mε

k = 1

2π Z ε
exp

(
−1

2
v2 − εε

k

)
for Z ε =

∑
k≥1

e−εε
k .

Since for ε = 0 we have R0 = Id , we will obtain a solution of the unregularized system
by passing to the limits ε → 0 and R → +∞ in the regularized one (5.7)–(5.9). Therefore
the proof of Theorem 1.2 can be split in the three followings steps:

Step 1: Existence for the regularized problem. In the first step we prove that the regular-
ized problem admits a solution. We verify easily that the regularized collision operator (5.2)
is bounded in �1(L1

t,x) and in �∞(L∞
t,x) and satisfies

∑
k

∫
R

Qε
R(f ε)k dv = 0 and

∑
k≥1

∫
R

Qε
R(f ε)k log

f ε
k

Mε
k

dv ≤ −α1

2

∑
k≥1

∫
R

(√
f ε

k − √
Nε

s Mε
k

)2
dv.
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Following the ideas of the proof of Proposition 4.8 of [4] we establish:

Proposition 5.3 Let T > 0 and let assume that Assumption (A.1) holds and that the initial
condition is at the thermal equilibrium, i.e. verify (A.2) and is given by (1.9). Then, there
exists ε0 > 0 and δ > 0 such that, if

∑
k≥1

‖f in
k ‖L1

x,v
< δ, (5.11)

and ε ∈ (0, ε0) then the regularized problem (5.7)–(5.9) admits a global weak solution
(V ε

R, (f ε
k,R)k≥1) on the interval [0, T ] which satisfies the entropy estimate:

∀t ∈ [0, T ], 0 ≤ Wε
R(t) + α1

η2

∫ T

0
Rε

R(t) dt ≤ CT , (5.12)

with

Wε
R(t) =

∑
k≥1

(
f ε

k,R log
f ε

k,R

Mk

− f ε
k,R + Mk

)
dx dv + 1

2

∫ ∫
|∇x,zV

ε
R|2 dx dz

and

Rε
R(t) = 1

2

∑
k≥1

∫ ∫ (√
f ε

k,R −
√

Nε
s,R Mε

k,R

)2
dx dv.

Step 2: Passing to the limit R → +∞. For ε > 0 fixed, one can pass to the limit as
R → +∞. We obtain

Proposition 5.4 Let T > 0 and let assume that (A.1) and (A.2) are satisfied. Let ε > 0
be fixed (ε < ε0) and (V ε

R, (f ε
k,R,χε

k,R,εε
k,R)k≥1) be a weak solution of the regularized

Boltzmann-Schrödinger-Poisson system (5.7)–(5.9). Then as R → +∞ this solution con-
verges to a weak solution (V ε, (f ε

k ,χε
k , εε

k)k≥1) of the regularized Boltzmann-Schrödinger-
Poisson system (5.7)–(5.9) with Qε

R is substituted by Qε
R in the Boltzmann equation (5.7).

Moreover it satisfies the entropy estimate (5.12) with f ε
k instead of f ε

k,R .

Proof We skip all the index ε in the notation. With our regularization (5.6) we have a bound
on V in L∞

t (W 1,∞
x,z ) depending only on ε but not on R. It provides thanks to (5.5) a bound on

(fk,R)k≥1 in �∞(L∞
t,x,v) depending only on ε and on the data. And with (5.4), we have a bound

on (fk,R)k≥1 in �1(L1
t,x,v) depending only on the data. Thus we can extract a subsequence

converging as R → +∞ towards a function f in �2(L2
t,x,v)-weak. Using the standard mean

compactness result (see Theorem 1.8 of [8], see also [16]), we deduce the relative strong
compactness of the sequence indexed by R∫

R

fk,Rψk dv

in L2
loc([0, T ] × (a, b)) for all ψk ∈ D(R) all null except for a finite number of them. Using

the fact that the quantity (1 + k2)fk,R is bounded in L∞
t (�1(L1

x,v)) we can choose ψk = 1.
Thus one obtain that ρR := (

∫
fk,R dv)k≥1 → ρ := (

∫
fk dv)k≥1 in L2

t,x -strong.
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The conservation of the mass implies that for all t ∈ [0, T ] we have ‖f ‖�1(L1
t,x,v ) =

‖f in‖�1(L1
t,x,v ) = Nin. Then we can solve the regularized Schrödinger-Poisson system (5.8)–

(5.9) with the given ρ := ∫
f dv and construct a unique solution V ∈ L∞

t (H 1
x,z). Using the

fact that the sequence (fR)R satisfies (5.12), we can use the continuity property of the so-
lution of the Schrödinger-Poisson system (cf. Proposition 3.4) to prove that the sequence
(VR)R is Cauchy and therefore converges towards V in L2

t (H
1
x,z). Properties of the eigenval-

ues of the Hamiltonian show that εk[Rε[VR]] → εk[Rε[V ]] in L2
t (W

2,∞
x,z ).

Furthermore, we have for all k ≥ 1

‖QR(fR)k‖L∞
x,v

≤ α2(‖fR‖�1(L1
x,v ) + ‖fR‖�∞(L∞

x,v )) ≤ CT,ε,

where CT,ε is a nonnegative constant depending only on T and ε and on the data. We deduce
that we can extract a subsequence (QR(fR)k)R converging as R → +∞ in L∞-weak∗. Then
from the definition of QR (5.2), we deduce that

∀φ ∈ L1((a, b) × R),

∫ ∫
(Q(f )k − QR(fR)k)φ dx dv → 0 as R → +∞.

Thus one can pass to the limit in the weak formulation of the Boltzmann-Schrödinger-
Poisson system (5.7)–(5.9) and prove straightforwardly that (V , (fk,εk,χk)k≥1) is a solu-
tion of (5.7)–(5.9) with Q instead of QR . Finally we recover the entropy estimate by passing
to the limit R → +∞ in (5.12). �

Step 3: Passing to the limit ε → 0. In the last step we prove Theorem 1.2 by taking the
limit ε → 0.

Since the solution satisfies the entropy estimate, we deduce that

∑
k≥1

∫ ∫ ∫
(0,T )×(a,b)×R

f ε
k (1 + v2 + k2 + | logf ε

k |) dx dv dt ≤ CT .

Thus the Dunford-Pettis Theorem and the De La Vallée Poussin Theorem implies that
(f ε

k )k≥1 and is weakly relatively compact respectively in �1(L1((0, T )× (a, b)×R)). Using
standard mean compactness result (see e.g. Theorem 1.8 of [8]), we deduce the strong rela-
tive compactness of the sequence (ρε

k )ε in L1([0, T ]×(a, b)). Therefore, up to an extraction,
we have

ρε
k → ρk strongly in �1(L1((0, T ) × (a, b))). (5.13)

Moreover ρ satisfies the estimate

∑
k≥1

∫ ∫
ρk(1 + k2) dx dt ≤ CT (5.14)

and the conservation of the mass implies

∀t ∈ [0, T ],∀ε > 0,

∫ b

a

Ns dx =
∫ b

a

Nε
s dx = Nin.

We can then apply Lemma 3.2 to solve the unregularized Schrödinger-Poisson system (3.1)–
(3.2) for the density ρ and construct V ∈ L∞([0, T ],H 1(�)) which is unique thanks to
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Lemma 3.3. Moreover multiplying the two Poisson equations by (V ε − V ) and integrating
lead to∫ ∫

�

|∇(V ε − V )|2 dx dz =
∫ ∫

�

Rε

[∑
k

(ρε
k |χε

k |2 − ρk|χk|2)
]
(V ε − V )dx dz

+
∫ ∫

(Rε − Id)

[∑
k

ρk|χk|2
]
(V ε − V )dx dz. (5.15)

Using the fact that with Lemma 5.2, ‖Rε − Id‖2 → 0 as ε → 0, where

‖Rε − Id‖2 := sup
{V ∈L2(�),V �=0}

‖(Rε − Id)V ‖L2(�)

‖V ‖L2(�)

,

then we can prove, adapting the techniques of Proposition 3.4 that∫ ∫
�

|∇(V ε − V )|2 dx dz ≤ C1‖Rε − Id‖2 ‖V ε − V ‖H 1(�)

+ C2‖ρε
k − ρk‖�1(L1

x ) ‖V ε − V ‖H 1(�) + C3 Nin‖V ε − V ‖2
H 1(�)

.

With the Poincaré inequality, we have for Nin small enough,

‖V ε − V ‖H 1(�) ≤ C(‖Rε − Id‖2 + ‖ρε
k − ρk‖�1(L1

x )).

Thus there exists N0 > 0 such that, for all 0 < Nin ≤ N0, there exists V ∈ L∞([0, T ],
H 1(�)) weak solution of the unregularized Schrödinger-Poisson system (3.1)–(3.2) and
such that the potential V ε , weak solution of the regularized system, converges towards V in
L2([0, T ],H 1(�)). The properties of the eigenvectors imply (see proof of Proposition 4.3)
that εε

k → εk in L2
t (L

∞
x ).

The end of the proof of Theorem 1.2 is standard (see [18, 21, 23]) and is based on a
double renormalization. We first write the equation satisfied by βδ(f

ε) with the function βδ

defined in Sect. 4.1 and weakly pass to the limit ε → 0. Then we renormalize the resulting
limit equation by β and let finally δ going to 0.

Remark 5.5 The convergence of the potential V ε is a key point in this proof of existence. We
notice that the technique used here relies strongly on the embedding H 1(�) ↪→ L∞

x L2
z(�)

which is not true when the x-variable is two dimensional. Then in this latter case we are
not able to prove uniqueness of solutions of the Schrödinger-Poisson system for (ρk)k given
and therefore the fixed point procedure does not converge. Thus the techniques used here do
not allow us to prove the existence of solution of the coupled kinetic-quantum model for a
two dimensional transport direction. However in the diffusive regime, the occupation factor
ρk decays with respect to k and it has been proved in [34] that this allows us to recover
uniqueness of solutions of the Schrödinger-Poisson system (in fact we can show in this
case that the last term in (3.11) is nonpositive). Using the Trudinger estimate for the entropy
functional furnishes existence of solutions of the drift-diffusion-Schrödinger-Poisson system
(see [34]).
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Appendix: Spectral Properties of the Hamiltonian

In this appendix, we list some basic properties of eigenfunctions and eigenvalues of the
Schrödinger operator in the z variable. For a given real valued function V in L2(0,1), let
H [V ] be the Schrödinger operator

H [V ] := −1

2

d2

dz2
+ V (z)

defined on the domain D(H [V ]) = H 2(0,1) ∩ H 1
0 (0,1). This operator admits a strictly in-

creasing sequence of real eigenvalues (εk[V ])k≥1 going to +∞. The corresponding eigen-
vectors, denoted by (χk[V ](z))k≥1 (chosen such that χ ′

k(0) > 0 and
∫ 1

0 |χk[V ]|2 dz = 1),
form an orthonormal basis of L2(0,1). They satisfy of course

−1

2

d2

dz2
χk + V χk = εkχk, χk ∈ H 1

0 (0,1), ∀k ≥ 1. (A.1)

Obviously, for V = 0, we have εk[0] = 1
2π2k2 and χk[0](z) = √

2 sin(πkz). And

if U ≤ V a.e. in (0,1) then ∀k ≥ 1, εk[U ] ≤ εk[V ].
In the sequel we will use the standard notation 〈f 〉 = ∫ 1

0 f (z) dz and when there is no
confusion possible εk will stand for εk[V ] and χk for χk[V ]. Following the study of the
spectral properties of H [V ] in Chap. 2 of [28], we have:

Lemma A.1 There exists a positive constant CV depending only on ‖V ‖L2(0,1) such that

∣∣∣∣εk[V ] − 1

2
π2k2

∣∣∣∣ ≤ CV ; ‖χk[V ] − √
2 sin(πkz)‖L∞(0,1) ≤ CV .

Moreover the constant CV can be chosen such that CV ≤ C1 exp(C2‖V ‖L2(0,1)), where the
constants C1 and C2 are independent of V and k.

Lemma A.2 Let V = V (λ, z) ∈ L∞
loc(0,�;L2

z(0,1)) with λ ∈ (0,�) (typically λ = t or
λ = xi ). If ∂λV ∈ L1

loc(λ,L2
z(0,1)), then ∂λεk ∈ L1

loc, ∂λχk ∈ L1
loc(λ,L∞

z (0,1)) and we have

∂λεk = 〈|χk|2∂λV 〉 and ∂λχk =
∑
��=k

〈χk χ� ∂λV 〉
εk − ε�

χ�.

Using these last two lemmata we can prove (see Appendix of [5]):

Lemma A.3 Let V and Ṽ be two real-valued functions in L2(0,1). Then there exist two
positive constants C1 and C2 independent of k, V and Ṽ such that

|εk[V ] − εk[Ṽ ]| ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1). (A.2)
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And,

‖χk[V ] − χk[Ṽ ]‖L∞(0,1) ≤ C1 exp(C2(‖V ‖L2(0,1) + ‖Ṽ ‖L2(0,1)))‖V − Ṽ ‖L1(0,1). (A.3)

Lemma A.4 Let V ∈ L2(0,1) such that V ≥ 0, then the eigenvectors of the Schrödinger
operator satisfy

‖χk[V ]‖L∞(0,1) ≤ C(1 + ‖V ‖1/2
L2(0,1)

).

Proof The result of Lemma 1 Chap. 1 of [28] provides:

χk(z) = Ak sin(
√

2εkz) + 2
∫ z

0

sin(
√

2εk(z − t))√
2εk

V (t)χk(t) dt, (A.4)

where Ak is a nonnegative constant to be determined. Thanks to the Cauchy-Schwarz in-
equality, we deduced

∣∣∣∣
∫ z

0

sin(
√

2εk(z − t))√
2εk

V (t)χk(t) dt

∣∣∣∣ ≤
∫ 1

0 V (t)|χk(t)|dt√
2εk

≤ 〈|χk|2V 〉1/2

√
2εk

‖V ‖1/2
L2(0,1)

.

Moreover, from (A.1),

εk = 1

2
〈|∂zχk|2〉 + 〈|χk|2V 〉 ≥ 〈|χk|2V 〉.

Thus, ∣∣∣∣
∫ z

0

sin(
√

2εk(z − t))√
2εk

V (t)χk(t) dt

∣∣∣∣ ≤ 1√
2

‖V ‖1/2
L2(0,1)

. (A.5)

Thus from (A.4) we have for all z ∈ [0,1]

|χk(z)| ≤ Ak + √
2‖V ‖1/2

L2(0,1)
. (A.6)

Now, we will use the condition ‖χk‖L2(0,1) = 1 to bound Ak . If we use the expression of χk

(A.4) in the identity
∫ 1

0 χ2
k dz = 1, we obtain

1 ≥ A2
k

∫ 1

0
sin

(√
2εkz

)2
dz

+ 4Ak

∫ 1

0
sin

(√
2εkz

)∫ z

0

sin(
√

2εk(z − t))√
2εk

V (t)χk(t) dt dz. (A.7)

For the second term we have from (A.5)∣∣∣∣
∫ 1

0
sin

(√
2εkz

)∫ z

0

sin(
√

2εk(z − t))√
2εk

V (t)χk(t) dt dz

∣∣∣∣ ≤ 1√
2
‖V ‖1/2

L2(0,1)
.

And we can calculate ∫ 1

0

[
sin

(√
2εkz

)]2
dz = 1

2
− sin(2

√
2εk)

4
√

2εk

.
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We have assumed that V ≥ 0. It implies εk[V ] ≥ ε[0] = 1
2π2k2, for all k ≥ 1. Thus we can

inject these remarks in (A.7), it leads to

1 ≥ A2
k

(
1

2
− 1

4π

)
− 2

√
2Ak‖V ‖1/2

L2(0,1)
.

This implies that there exists a nonnegative constant C such that

Ak ≤ C(1 + ‖V ‖1/2
L2(0,1)

), ∀k ≥ 1.

It remains to inject this last estimate in (A.6) to conclude the proof. �

Lemma A.5 Let V and Ṽ be two given nonnegative potentials in L2(0,1). Then there exists
a nonnegative constant C such that

|εk[V ] − εk[Ṽ ]| ≤ C(1 + ‖V ‖1/2

L2
z (0,1)

+ ‖Ṽ ‖1/2

L2
z (0,1)

)‖V − Ṽ ‖L2
z (0,1). (A.8)

Proof This is an easy consequence of Lemmas A.4 and A.2. Indeed, if we denote for λ ∈
[0,1], W(λ, z) = Ṽ + λ(V − Ṽ ) and εk(λ) = εk[W(λ, ·)], we have

εk[V ] − εk[Ṽ ] =
∫ 1

0
∂λεk(λ) dλ =

∫ 1

0
〈|χk[W(λ, ·)](z)|2(V − Ṽ )〉dλ.

Thus, we have

|εk[V ] − εk[Ṽ ]| ≤ ‖V − Ṽ ‖L2(0,1)

∫ 1

0
‖χk[W(λ, ·)]‖2

L4(0,1)
dλ.

The estimate (A.8) follows then from Lemma A.4 and the interpolation:

‖χk[W(λ, ·)]‖2
L4(0,1)

≤ ‖χk[W(λ, ·)]‖L2(0,1)‖χk[W(λ, ·)]‖L∞(0,1). �

References

1. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamical limits of kinetic equations, II: convergence
proofs for the Boltzmann equation. Commun. Pure Appl. Math. 46(5), 667–753 (1993)

2. Ben Abdallah, N.: Weak solutions of the initial-boundary value problem for the Vlasov-Poisson system.
Math. Methods Appl. Sci. 17(6), 451–476 (1994)

3. Ben Abdallah, N., Degond, P.: On a hierarchy of macroscopic models for semiconductors. J. Math. Phys.
37(7), 3306–3333 (1996)

4. Ben Abdallah, N., Méhats, F.: On a Vlasov-Schrödinger-Poisson model. Commun. Partial Differ. Equ.
29(1–2), 173–206 (2004)

5. Ben Abdallah, N., Méhats, F., Vauchelet, N.: Diffusive transport of partially quantized particles: exis-
tence uniqueness and long time behaviour. Proc. Edinb. Math. Soc. 49, 513–549 (2006)

6. Ben Abdallah, N., Tayeb, M.L.: Diffusion approximation for the one dimensional Boltzmann-Poisson
system. Discrete Contin. Dyn. Syst. Ser. B 4(4), 1129–1142 (2004)

7. Blakemore, J.S.: Semiconductors Statistics. Pergamon, Elmsford (1962)
8. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Series in Appl. Math.

Gauthier-Villars, Paris (2000)
9. Degond, P., Goudon, T., Poupaud, F.: Diffusion limit for nonhomogeneous and non-micro-reversible

processes. Indiana Univ. Math. J. 49(3), 1175–1198 (2000)
10. Diperna, R.J., Lions, P.L.: On the Cauchy problem for the Boltzmann equation; global existence and

weak stability. Ann. Math. 130, 707–741 (1989)



914 N. Vauchelet

11. Diperna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent.
Math. 98(3), 511–547 (1989)

12. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: Lp Spaces. Springer Monographs
in Mathematics. Springer, New York (2007)

13. Golse, F., Levermore, C.D.: Stokes-Fourier and acoustic limits for the Boltzmann equations: convergence
proofs. Commun. Pure Appl. Math. 55(3), 336–393 (2002)

14. Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statis-
tique de Fermi-Dirac. Asymptot. Anal. 6, 135–169 (1992)

15. Golse, F., Saint-Raymond, L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision
kernels. Invent. Math. 155(1), 81–161 (2004)

16. Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the moments of solution of a transport
equation. J. Funct. Anal. 76, 110–125 (1988)

17. Kesten, H., Papanicolaou, G.C.: A limit theorem for turbulent diffusion. Commun. Math. Phys. 65(2),
97–128 (1979)

18. Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III.
J. Math. Kyoto Univ. 34(3), 539–584 (1994)

19. Lions, P.-L., Toscani, G.: Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat. Iberoam.
13(3), 473–513 (1997)

20. Masmoudi, N., Saint-Raymond, L.: From the Boltzmann equation to the Stokes-Fourier system in a
bounded domain. Commun. Pure Appl. Math. 56(9), 1263–1293 (2003)

21. Masmoudi, N., Tayeb, M.L.: Diffusion limit for semiconductor Boltzmann-Poisson system. SIAM J.
Math. Anal. 38(6), 1788–1807 (2007)

22. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)
23. Mischler, S.: On the trace problem for the solutions of the Vlasov equation. Commun. Partial Differ.

Equ. 25(7–8), 1415–1443 (2000)
24. Nier, F.: A stationary Schrödinger-Poisson system from the modelling of electronic devices. Forum Math.

2(5), 489–510 (1990)
25. Nier, F.: A variational formulation of Schrödinger-Poisson systems in dimension d ≤ 3. Commun. Partial

Differ. Equ. 18(7–8), 1125–1147 (1993)
26. Pietra, P., Vauchelet, N.: Modeling and simulation of the diffusive transport in a nanoscale Double-Gate

MOSFET. J. Comput. Elec. 7, 52–65 (2008)
27. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron

transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)
28. Pöschel, J., Trubowitz, E.: Inverse Spectral Theory. Academic Press, San Diego (1987)
29. Poupaud, F.: Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of

boundary layers. Asymptot. Anal. 4, 293–317 (1991)
30. Saint-Raymond, L.: From the BGK model to the Navier-Stokes equations. Ann. Sci. Ecole Norm. Super.,

4ème Sér. 36, 271–317 (2003)
31. Shockley, W., Read, W.T.: Statistics of recombinations of holes and electrons. Phys. Rev. 87, 835–842

(1952)
32. Seeger, K.: Semiconductor Physics. An Introduction, 6th edn. Springer, Berlin (1997)
33. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)
34. Vauchelet, N.: A coupled quantum-classical model for the diffusive transport of partially quantized par-

ticles. Math. Models Methods Appl. Sci. 18(4), 489–510 (2008)
35. Villani, C.: Limites hydrodynamiques de l’équation de Boltzmann. In: Séminaire Bourbaki, 53ème an-

née, vol. 893 (2000–2001)
36. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S.: Simulating quantum transport in nanoscale transis-

tor: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730–3729 (2002)
37. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire tran-

sistors with the effective mass approximation. J. Appl. Phys. 96(3), 2192–2203 (2004)


	Diffusive Limit of a Two Dimensional Kinetic System of Partially Quantized Particles
	Abstract
	Introduction and Main Results
	The Schrödinger-Poisson System
	The Transport Equation
	Main Results
	Strategy of the Proof

	A Priori Estimate
	Properties of the Collision Operator
	A Priori Estimate

	The Schrödinger-Poisson System
	Diffusive Limit
	Convergence of the Renormalized Solutions
	The Limit Equation

	Existence for the Overall Problem
	The Truncated Boltzmann Equation
	Proof of Theorem 1.2

	Acknowledgements
	Appendix: Spectral Properties of the Hamiltonian
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


